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This paper deals with the problem of detecting a distributed target in interference and
noise. The target signal and interference are assumed to lie in two linearly independent
subspaces, and their coordinates are unknown. The noise is Gaussian distributed, with an
unknown covariance matrix. To estimate the covariance matrix, a set of training data is
supposed available. We derive the Rao test and its two-step variant both in homogeneous
and partially homogeneous environments. All of the proposed detectors exhibit a
desirable constant false alarm rate. Numerical examples show that the proposed detectors
can provide better detection performance than their natural counterparts in some
scenarios.

& 2015 Elsevier B.V. All rights reserved.
1. Introduction

Detection of a distributed target in unknown disturbance
is an interesting research topic. Up to now a large number of
approaches have been proposed to solve the problem in
various scenarios. Particularly, in [1] a distributed target is
embedded in unknown Gaussian noise, and the echoes
reflected by the distributed target are assumed to have the
same direction. To estimate the unknown covariance matrix, a
set of signal-free training (secondary) data is required. When
the test (primary) data and secondary data have the identical
covariance matrix, it is usually referred to as the homoge-
neous environment (HE) [1]. In contrast, when the primary
and secondary data share the same structure of the covariance
L. Huang),
(Y. Wang).
matrix, but with unknown power mismatch, it is denoted as
the partial HE (PHE) [1]. Based on the generalized likelihood
ratio test (GLRT) criterion, several detectors for the HE and
PHE are proposed in [1]. The Rao and Wald tests are derived
in [2] for the HE and in [3] for the PHE. Remarkably, a
milestone in the area of multichannel signal detection in
unknown Gaussian noise is the report in [4], where the model
is very general and the GLRT-based detectors are proposed
and detailed analyzed. More recently, the detection model in
[4] is further generalized in [5,6] and many detectors are
devised. Some other related work is exploited in [7–14] and
the references therein.

It is worth noting that interference is not taken into
account in the references mentioned above. However, in
many practical applications there usually exists interfer-
ence due to electronic countermeasure (ECM) systems or
civil broadcasting systems. The detection problem is
addressed in [15–20] in the presence of deterministic
interference under the assumption of white Gaussian
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noise or colored Gaussian noise with known covariance
matrix. Moreover, the GLRT is derived in [21] for detecting
a point-like target in undernulled noise-like interference
and unknown Gaussian noise. The resulting GLRT is shown
to be equivalent to the adaptive coherence estimator
(ACE). In [22], the problem of detecting a point-like target
in deterministic interference and unknown Gaussian noise
is dealt with. The interference lies in the primary and
secondary data, and it is confined to a known subspace.
The detection problem is solved by the method of sieves.
For the distributed target detection, in [23] the echo
signals reflected from the target are all assumed to come
from the same direction, and the signal steering vector lies
in a known subspace with an unknown coordinate. The
GLRT and two-step GLRT (2S-GLRT) are proposed in the
presence of deterministic interference for the HE. The
detection problem in [23] is extended in [24], where the
deterministic interference is assumed to lie in an unknown
subspace except for the knowledge of the interference
subspace dimension. Additionally, in [25] the interference
and target signal are assumed to lie in two linearly
independent subspaces, and the GLRT and 2S-GLRT are
proposed for the HE and PHE.

Note that there exists no uniformly most powerful
(UMP) test for the detection problem in [25], since the
noise covariance matrix and the coordinates of the signal
and interference are unknown. Hence, it may be reason-
able to adopt approaches different from the GLRT and 2S-
GLRT employed therein to devise detectors. Besides the
GLRT criterion, the other two criteria widely used for
detector design are the Rao test and Wald test, e.g., [26–
30]. In this paper we adopt the Rao test, including the one-
step and two-step versions, to design detectors for the
detection problem in [25], since the Rao test can achieve
best detection performance in some scenarios1. It is shown
that all the proposed detectors are constant false alarm
rate (CFAR) with respect to (w.r.t.) the unknown covar-
iance matrix. Moreover, the proposed detectors can
achieve better detection performance than the existing
ones in some situations.

The rest of the paper is organized as follows. Section 2
formulates the detection problem to be solved. Section 3
derives the one-step Rao test and two-step Rao (2S-Rao)
test in the HE and PHE. Section 4 compares the detection
performance of the proposed detectors with the existing
ones by Monte Carlo simulations. Finally, some concluding
remarks are given in Section 5.

Notations: Matrices, vectors, scalars, are denoted by
bold-face upper case letters, bold-face lower case letters,
and light-face lower case letters, respectively. The super-
scripts ðUÞn, ðUÞT , and ðUÞH stands for the conjugate,
transpose, and conjugate transpose of a vector or matrix,
respectively. The notation � is the Kronecker product. For
a complex number a, absðaÞ stands for its modulus. For an
N � K matrix A, E½A� denotes the statistical expectation of
A, vecðAÞ vectorizes A by stacking its columns, PA is the
1 For example, the so-called modified two-step GLRT (M2S-GLRT) in
[31], which essentially can be derived according to the Rao test [8], has
the best detection performance in some situations.
orthogonal projector (projection matrix) onto the sub-
space spanned by the columns of A, i.e., PA ¼ AðAH

AÞ�1AH , and P?
A ¼ IN�PA. When A becomes a square

matrix, jAj and trðAÞ denote its determinant and trace,
respectively. Further, when A turns into a positive definite
matrix, A1=2 denotes its square-root matrix (positive defi-
nite and satisfying A1=2A1=2 ¼ A), and A�1=2 is the inverse
of A1=2. minða; bÞ denotes the minimum value of a and b.
ln f stands for the natural logarithm of the scalar function
f , and ∂f =∂Ξ is the partial derivative of f wr.t. Ξ, with Ξ
being a vector or matrix. Moreover, Ξ̂i is the maximum
likelihood estimate (MLE) of Ξ under hypothesis Hi,
i¼ 0;1. Finally, IN is an N � N identity matrix and 0p�q is
a p� q null matrix.

2. Problem formulation

Consider a radar system with N antenna elements. The
target, if present, occupies K successive range cells. Denote
the data in the kth range cell as an N � 1 column vector xk,
k¼ 1;2;…;K . We try to make a decision between hypoth-
esis H0 that xk only contains disturbance dk and hypothesis
H1 that xk contains disturbance dk and useful signal sk. The
disturbance dk consists of colored noise nk, usually includ-
ing clutter as well as thermal noise, and interference ik.
The signal sk and interference ik are both assumed to be
deterministic and lie in two linearly independent sub-
spaces [25]. In other words, sk and ik can be represented by
sk ¼Hpk and ik ¼ Jqk, respectively. The N � p matrix H and
N � qmatrix J are both of full column rank. The columns of
H spans the subspace where the signal lies, while the
columns of J spans the subspace which the interference
belongs to. The p� 1 vector pk is the coordinate vector for
the signal, and the q� 1 vector qk is the coordinate vector
for the interference. Note that the augmented matrix
B¼ ½H; J� is full-column-rank due to the linear indepen-
dence of the subspaces spanned by the columns of H and J,
and hence pþqrN [15–17,19,23,25]. Moreover, nk,
k¼ 1;2;…;K , is independent and identically distributed
(IID), mean-zero, complex circular Gaussian vector, with a
covariance matrix Rt , which is positive definitive and
unknown. To estimate Rt , it is often assumed that a set
of secondary data, denoted by an N � L matrix XL, is
available. These secondary data are usually collected in
the vicinity of the primary data X. Let the lth column of XL

be xe;l, l¼ 1;2;…; L, which is IID and has the covariance
matrix R. In the HE Rt ¼ R [32], while in the PHE Rt ¼ σ2R
[1], with σ2 being a scaling factor accounting for unknown
power mismatch between the primary and secondary data
[1].

With the assumption above, the detection problem can
be formulated as the following binary hypothesis test

H0:X ¼ JQþN;XL ¼NL;

H1:X ¼HPþ JQþN;XL ¼NL;

(
ð1Þ

where P ¼ ½p1;p2;…;pK � and Q ¼ ½q1;q2;…;qK � are the
unknown coordinate matrices of the signal and interfer-
ence, respectively. Note that the subspace model in (1) is
very general. It either accounts for the multiple targets
and/or interferences [33] or corresponds to the
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uncertainty in the steering vector for the target and/or
interference [34]. Moreover, the subspace interference
model in (1) is a common assumption, widely used in
the literature [15–20,22,23,25]. The justification is that in
practice this information can be obtained by operating the
radar in receive-only mode before the start of transmission
[35].

3. The proposed detectors

In this section we develop the Rao test, as well as its
two-step variation, for the detection problem in (1) both in
the HE and PHE. Let Θ be a parameter vector, partitioned
as

Θ¼ ½ΘT
r ;Θ

T
s �T ð2Þ

where Θr ¼ vecðPÞ and Θs ¼ ½vecT ðQ Þ; vecT ðRÞ�T (in the HE)
or Θs ¼ ½σ2; vecT ðQ Þ; vecT ðRÞ�T (in the PHE). The Θr and Θs

are usually called the relative and nuisance parameters,
respectively. The Fisher information matrix (FIM) w.r.t. Θ is
given by [36]

IðΘÞ ¼ E ½∂ ln f 1ðX;XLÞ=∂Θn�½∂ ln f 1ðX;XLÞ=∂ΘT �� �
; ð3Þ

where f 1ðX;XLÞ is the joint probability density function
(PDF) of X and XL under H1. For convenience, the IðΘÞ is
often partitioned in the following manner:

IðΘÞ ¼
IΘr ;Θr ðΘÞ IΘr ;Θs ðΘÞ
IΘs ;Θr ðΘÞ IΘs ;Θs ðΘÞ

" #
: ð4Þ

It follows from [36] that the Rao test is

tRao ¼
∂ ln f 1ðX;XLÞ

∂Θr

����H
Θ ¼ Θ̂0

½I�1ðΘ̂0Þ�Θr ;Θr

∂ ln f 1ðX;XLÞ
∂Θr

����
Θ ¼ Θ̂0

;

ð5Þ
where ½I�1ðΘ̂0Þ�Θr ;Θr

is

½I�1ðΘÞ�Θr ;Θr
¼ ½IΘr ;Θr ðΘÞ�IΘr ;Θs ðΘÞI�1

Θs ;Θs
ðΘÞIΘs ;Θr ðΘÞ��1 ð6Þ

evaluated at Θ̂0, i.e., the MLE of Θ under H0.
To derive the Rao test, we need the joint PDF f 1ðX;XLÞ,

which is

f 1ðX;XLÞ ¼ πNðLþKÞσ2NK jRjLþK� ��1
exp �trðR�1SÞ

n
�tr R�1ðX�BDÞðX�BDÞH

h i
=σ2

o
; ð7Þ

where S is the sample covariance matrix (SCM) given by
S ¼ XLX

H
L , B¼ ½H; J�, and D¼ ½PH ;QH�H . Taking the deriva-

tive of the logarithm of (7) w.r.t. P and Pn results in

∂ ln f 1ðX;XLÞ=∂vecðPÞ ¼ vec ðX�BDÞHR�1
t H

h iT� �
ð8Þ

and

∂ ln f 1ðX;XLÞ=∂vecðPnÞ ¼ vec HHR�1
t ðX�BDÞ

h i
; ð9Þ

respectively. Letting Z ¼ X�BD, then plugging (8) and (9)
into (3) yields

IΘr ;Θr ðΘÞ ¼ E vecðHHR�1
t ZÞvecT ðHTR�T

t ZnÞ
h i

¼ E IK � HHR�1
t

h i
vecðZÞ ðIK � HTR�T

t ÞvecðZnÞ
h iT� �
¼ IK � HHR�1
t

h i
E vecðZÞvecHðZÞ� �

IK � R�1
t H

h i
¼ IK � HHR�1

t

h i
IK � Rt½ � IK � R�1

t H
h i

¼ IK � HHR�1
t H; ð10Þ

where we have used vecðA1A2A3Þ ¼ ðAT
3 � A1ÞvecðA2Þ ([37],

p. 35), E½vecðZÞvecHðZÞ� ¼ IK � Rt , and ðA4 � A5ÞðA6�
A7Þ ¼ A4A6 � A5A7 ([37], p. 32) in the second, fourth, and
last equalities, respectively. Ai, i¼ 1;2;…;7, in the equal-
ities above is an arbitrary conformable matrix.

Note that IΘr ;Θs ðΘÞ is a null matrix. Hence, from (6) we
have

½I�1ðΘÞ�Θr ;Θr
¼ I�1

Θr ;Θr
ðΘÞ ¼ ðIK � HHR�1

t HÞ�1: ð11Þ

Substituting (8) and (11) into (5) and setting P ¼ 0p�K

leads to the Rao test for given Q and Rt

tRaojQ ;Rt ¼ vec ðX�JQ ÞHR�1
t H

h iT� �
IK � ðHHR�1

t HÞ�1
h i

�vec HHR�1
t ðX� JQ Þ

h i
¼ vec ðX�JQ ÞHR�1

t H
h iT� �

vec ðHHR�1
t HÞ�1HHR�1

t ðX�JQ Þ
h i

¼ tr ðX� JQ ÞHR�1
t HðHHR�1

t HÞ�1HHR�1
t ðX�JQ Þ

h i
:

ð12Þ

3.1. One-step Rao test

In order to obtain the explicit one-step Rao test, we
need the MLEs of Q , R, and σ2 under H0. In light of (7), the
MLE of R under H0 for given Q is

R̂0 ¼ SþðX�JQ ÞðX� JQ ÞH=σ2
h i

=ðKþLÞ: ð13Þ

Inserting (13) into (7) results in

f 0ðX;XL; R̂0Þ ¼ ½ðLþKÞ=ðeπÞ�NðKþ LÞ Sj j� ðLþKÞ σ2NK IKj
�

þðX� JQ ÞHS�1ðX� JQ Þ=σ2
���LþK

��1; ð14Þ

where we have used the identity (A1-2) in [4], i.e.,

C1þC2C3C4j j ¼ C1j j C3j j C�1
3 þC4C

�1
1 C2

��� ���; ð15Þ

with C i, i¼ 1;2;3; being an arbitrary matrix of appropriate
orders. Nulling the derivative of (14) w.r.t. Q , after some
algebra, yields the MLE of Q under H0

Q̂ 0 ¼ ð~JH ~J Þ�1 ~J
H ~X ; ð16Þ

where ~X ¼ S�1=2X and ~J ¼ S�1=2J. In view of (16), we have

~X� ~J Q̂ 0 ¼ P?
~J
~X : ð17Þ

Applying the matrix inversion lemma ([38], p. 534) to
(13) and utilizing (17) leads to

R̂
�1
0 ¼ ðKþLÞS�1=2 IN�P?

~J
~X ðσ2IKþ ~X

H
P?

~J
~X Þ�1 ~X

H
P?

~J

h i
S�1=2:

ð18Þ
It follows from (18) that

ðHHR̂
�1
0 HÞ�1 ¼ σ2 ~H

H ~H� ~H
H
P?

~J
~X

h
ðσ2IKþ ~X

H
P?

~J
~X Þ�1 ~X

H
P?

~J
~H
i�1
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Fig. 1. PD versus SNR in the HE. p¼ 7, K ¼ 4, L¼ 2N, and INR¼15 dB. (a) q=1, (b) q=5.
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¼ σ2 ð ~HH ~H Þ�1þð ~HH ~H Þ�1 ~H
H
P?

~J
~X

h
ðσ2IK

þ ~X
H
P?

~J P?
~H P?

~J
~X Þ�1 ~X

H
P?

~J
~H ð ~HH ~H Þ�1

i
; ð19Þ

where ~H ¼ S�1=2H. Plugging (17)–(19) into (12), after some
algebra, yields the Rao test for known σ2

tRaojσ2 ¼ tr ~X
H
P?

~J IN� ~X ðσ2IK þ ~X
H
P?

~J
~X Þ�1 ~X

H
h in

P?
~J P ~H

U INþP?
~J
~X ðσ2IK þ ~X

H
P?

~J P?
~H P?

~J
~X Þ�1 ~X

H
P?eJ

	 

P ~HP

?
~J

U IN� ~X ðσ2IK þ ~X
H
P?

~J
~X Þ�1 ~X

H
h i

P?
~J
~X
o
=σ2: ð20Þ

Setting σ2 ¼ 1 in (20) results in the Rao test in the HE,
which, as shown in the appendix, can be written in the
compact form2

tRaoh ¼ tr ðIK þ ~X
H
P?

~J
~X Þ�1 ~X

H
P?

~J P ~HP
?
~J
~X

h
ðIK

þ ~X
H
P?

~J P?
~H P?

~J
~X Þ�1

i
: ð21Þ

According to [1] or [6], the MLE of σ2 under H0, denoted
as σ̂20, is the unique positive solution to the equation,

NK=ðKþLÞ�
Xt

k ¼ 1
λk;0=ðλk;0þxÞ ¼ 0; ð22Þ

where x denotes the unknown, t ¼ minðN;KÞ, and λk;0 is
the kth non-zero eigenvalue of ~X

H
P?

~J
~X .

Replacing BD by JQ in (7), then nulling its derivative Q.
r.t. Q yields the MLE of Q for given R under H0

Q̂ 0 ¼ ðJHJÞ�1J
H
X; ð23Þ

where J ¼ R�1=2J and X ¼ R�1=2X. Plugging (23) into (12)
leads to the Rao test for given R and σ2,

tRaojR;σ2 ¼ trðXH
P?
J PHP

?
J XÞ=σ2: ð24Þ

Inserting (16) and σ̂20 into (13) results in

R̂0 ¼ S1=2ðINþP?
~J
~X ~X

H
P?

~J =σ̂20ÞS1=2=ðKþLÞ: ð25Þ
2 To distinguish the detectors for the HE and PHE, we add “h” and
“ph” in the corresponding subscripts of them.
Substituting σ̂20 and (25) into (20) yields the final Rao
test in the PHE

tRaoph ¼ trð �XH
P?

�J P �HP
?
�J
�X Þ=σ̂20; ð26Þ

where �X ¼ R̂
�1=2
0 X, �J ¼ R̂

�1=2
0 J, and �H ¼ R̂

�1=2
0 H.

3.2. Two-step Rao test

For the two-step detector design, it is first assumed that
the covariance matrix (in the HE) or only its structure (in
the PHE) is known, and a detector according to a certain
criterion is devised. Then the covariance matrix or its
structure is replaced by a proper estimate [1]. Setting
σ2 ¼ 1 in (24) and substituting S for the implicitly used R
yields the 2S-Rao test in the HE

t2S�Raoh ¼ trð ~XH
P?

~J P ~HP
?
~J
~X Þ: ð27Þ

To obtain the 2S-Rao test in the PHE, we need to derive
the MLE of σ2 for given R under H0. Inserting (23) into (7),
setting P ¼ 0p�K , and ignoring the PDF of XL results in

f 0ðX; Q̂ 0Þ ¼ ðπNσ2NjRjÞ�Kexp �trðXH
P?
J XÞ=σ2

h i
: ð28Þ

Nulling the derivative of (28) w.r.t. σ2 leads to the MLE
of σ2 for given R under H0

σ̂20 ¼ trðXH
P?
J XÞ=NK: ð29Þ

Substituting (29) into (24) and dropping the constant
yields the Rao test for given R in the PHE

tRaophjR ¼ trðXH
P?
J PHP

?
J XÞ=trðXH

P?
J XÞ: ð30Þ

Replacing the implicitly used R in (30) by S results in
the final 2S-Rao test in the PHE

t2S�Raoph ¼ trð ~XH
P?

~J P ~HP
?
~J
~X Þ=trð ~XH

P?
~J
~X Þ: ð31Þ

Remarkably, all the proposed detectors are CFAR. Pre-
cisely, the detectors (21) and (27) in the HE are CFAR w.r.t.
the noise covariance matrix R, and the detectors (26) and
(31) in the PHE are CFAR w.r.t. R and σ2. This can be proved
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Fig. 2. PD versus SNR in the PHE. p¼ 8, K ¼ 4, L¼ 2N, and INR¼15 dB. (a) q=1, (b) q=3.
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in a manner analogous to [1,39]. For simplicity, the details
are omitted here.

4. Simulation results

In this section, we assess the detection performance of the
proposed detectors by Monte Carlo simulation. To obtain the
detection threshold for a preassigned probability of false
alarm (PFA), 100/PFA data realizations are performed. To
determine the probability of detection (PD), 104 data realiza-
tions are used. The signal-to-noise ratio (SNR) and interfer-
ence-to-noise ratio (INR) are defined as

SNR¼ trðPHHHR�1HPÞ ð32Þ
and

INR¼ trðQHJHR�1JQ Þ; ð33Þ
respectively. Throughout this section we set N¼ 12 and
PFA¼10�3, and the INR is set to be 15 dB in all figures
except Fig. 7. Moreover, the ði; jÞth element of R is chosen as
0:96absði� jÞ. In the PHE, we choose σ2 ¼ 2. The matrices H and
J are randomly chosen. After being generated, they are fixed
in each Monte Carlo simulation.

For comparison purposes, the PDs of the GLRT and 2S-
GLRT for the detection problem in (1) are also provided.
The GLRT and 2S-GLRT in the HE are [25]

tGLRTh
¼ IKþ ~X

H
P?

~J
~X

��� ���= IK þ ~X
H
P?

~B
~X

��� ��� ð34Þ

and

t2S�GLRTh
¼ tr ~X

HðP ~B �P ~J Þ ~X
h i

; ð35Þ

respectively. Moreover, the GLRT and 2S-GLRT in the PHE
are [25]

tGLRTph
¼

σ̂20

� �NK=ðKþLÞ
IK þ ~X

H
P?

~J
~X=σ̂20

��� ���
σ̂21

� �NK=ðKþLÞ
IK þ ~X

H
P?

~B
~X=σ̂21

��� ��� ð36Þ
and

t2S�GLRTph
¼ trð ~XH

P?
~J
~X Þ=trð ~XH

P?
~B
~X Þ; ð37Þ

respectively. In (36), σ̂20 is the sole solution to (22), and σ̂21
is the sole solution to the equation

NK=ðKþLÞ�
Xt

k ¼ 1
λk;1=ðλk;1þxÞ ¼ 0; ð38Þ

where x is the unknown, t ¼ minðN;KÞ, λk;1 is the kth
non-zero eigenvalue of ~X

H
P?

~B
~X , with ~B ¼ S�1=2B and

B¼ ½H; J�.
Fig. 1 shows the detection performance of the detectors

in the HE. The subscript “HE” indicates that a detector is
proposed for the HE. Similarly, “PHE” denotes a detector is
devised for the PHE. It is seen that the 2S-Rao test offers
the highest PD for q¼ 5. Moreover, the PD of each detector
decreases with the increase of q. Essentially, this is due to
the increase of the loss of the signal energy projected onto
the interference subspace.

Fig. 2 displays the detection performance of the detec-
tors in the PHE. The results show that for the chosen
parameters the 2S-Rao test achieves a higher PD than the
other detectors. Noticeably, the PD of the Rao test in the
PHE for q¼ 3 is not a monotonically increasing function of
the SNR. This phenomenon is more clearly shown in Fig. 3.
This result is consistent with that in [40,41]. An intuitive
interpretation is that the Rao test is originally proposed for
the case of low SNR and a large number of secondary data
([38], p. 208–217, p. 232–234).

The aforementioned phenomenon disappears when the
number of the secondary data is large enough, as shown in
Fig. 4. Precisely, Fig. 4 indicates that for the case of
sufficient secondary data the PDs of the Rao test in the
HE and PHE monotonically increase as the SNR becomes
larger.
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Fig. 3. PDs of the Rao test in the HE and PHE under different SNRs. L¼ 2N and INR¼15 dB. In (a) the parameters for the Rao test, indicated by the solid line,
are p¼ 5, q¼ 3, and K ¼ 2, while the parameters for the Rao test, indicated by the dashed-dot line, are p¼ 9, q¼ 3, and K ¼ 2. In (b) the parameters for the
Rao test, indicated by the solid line, are p¼ 1, q¼ 1, and K ¼ 6, while the parameters for the Rao test, indicated by the dashed-dot line, are p¼ 2, q¼ 2, and
K ¼ 6. (a) Rao test in the HE, (b) Rao test in the PHE.
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Fig. 4. PDs of the Rao test in the HE and PHE under different SNRs. L¼ 14N and INR¼15 dB. The values of p, q, and K for the Rao test, indicated by the solid
or dash-dot line, are the same as the Rao test in Fig. 3 indicated by corresponding lines. (a) Rao test in the HE, (b) Rao test in PHE.
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Fig. 5 compares the performance of the Rao test and
GLRT in the HE with known matrix R3. The values of p, q,
and K are the same as Fig. 1. It is indicated in Fig. 5 that the
Rao test in the HE for known R is superior to the GLRT
when q¼ 1 or q¼ 5.

Fig. 6 is analogous to Fig. 5, but it is for the PHE. It is
shown that the Rao test in the PHE for known R has higher
PD than the GLRT. Particularly, at PD¼0.9 the performance
improvement of the Rao test over the GLRT in terms of SNR
is nearly 5 dB.
3 Setting σ2 ¼ 1 in (24) we obtain the Rao test in the HE for known R.
Replacing ~X , ~B , and ~J in (35) by X, B, and J , respectively, results in the
GLRT in the HE for known R. Moreover, the Rao test for the case of known
R in the PHE is given in (30). The GLRT for known R in the PHE is obtained
when ~X , ~B , and ~J in (37) are replaced by X, B, and J, respectively.
Fig. 7 depicts the PDs of the detectors for different INRs. It
is seen that the PDs are nearly unaltered with the increase of
the INR. In other words, all the detectors can successfully
reject the interference. Together with the results in Figs. 1–6,
we see that the detection performance of the detectors are
mainly affected by the dimension of the interference sub-
space, instead of the power of the interference.

Note that the number of the range bins that the
distributed target occupies, i.e., K , is assumed to be exactly
known in the simulations above. However, there may be a
mismatch between the actual value of K and the nominal
one. When the mismatch arises, the actual value of K ,
denoted as Ka, is not equal to the nominal K , denoted as
Kn. In particular, the phenomenon of signal contamination
would happen if Ka4Kn, i.e., the data collected from some
range bins the target occupies are taken as a portion of the
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Fig. 5. PD versus SNR in the HE for known R. p¼ 7, K ¼ 4, and INR¼15 dB. (a) q=1, (b) q=5.
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training data. To quantify the mismatch, we define the
contaminated SNR (cSNR) as cSNR¼ PΔK

k ¼ 1 s
H
c;kR

�1sc;k=L,
where ΔK ¼ Ka�Kn and sc;k, lying in the subspace spanned
by the columns of H, is the signal component in the kth
signal-contaminated range bin.

Fig. 8 investigates the detection performance of the
detectors when signal contamination occurs, where “no
mis.” and “mis.” denote the matched and mismatched
cases, respectively. Only the 2S-Rao and 2S-GLRT are
shown to avoid squeezing too many curves in Fig. 8. It is
seen that the signal contamination degrades detection
performance of the detectors, and the 2S-Rao can provide
a slightly higher PD than the 2S-GLRT in the HE and PHE.
Essentially, the performance degradation is owing to the
raise of the detection thresholds, caused by the signal-
contaminated training data.
5. Conclusions

In this paper, we have considered the distributed target
detection in interference and noise. We have derived the
one-step Rao test and two-step Rao test both in the HE and
PHE, all of which have the CFAR property. It is shown that
the detectors can effectively reject the interference and
detect a target. However, the detection performance
degrades with the increase of the interference subspace
dimension. The proposed 2S-Rao test in the HE can
provide higher PD than the existing GLRT and 2S-GLRT in
some situations. Similarly, the proposed 2S-Rao test in the
PHE can achieve the best detection performance.
Appendix. Derivation of (21)

In the HE (i.e.,σ2 ¼ 1), (20) becomes

tRaoh ¼ tr ~X
H
P?

~J ðIN�EÞP?
~J P ~H ðINþFÞP ~H

h
P?

~J ðIN�EÞP?
~J
~X
i
;

ð39Þ
where

E¼ ~X ðIKþ ~X
H
P?

~J
~X Þ�1 ~X

H
; ð40Þ

F ¼ P?
~J
~X ðIKþ ~X

H
P?

~J P?
~H P?

~J
~X Þ�1 ~X

H
P?

~J : ð41Þ

It is straightforward to extend (39) as

tRaoh ¼ trðG1þG2�G3�G4Þ; ð42Þ
where

G1 ¼ ~X
H
P?

~J P ~HP
?
~J
~X� ~X

H
P?

~J P ~HP
?
~J EP?

~J
~X ; ð43Þ

G2 ¼ ~X
H
P?

~J P ~H FP ~HP
?
~J
~X� ~X

H
P?

~J P ~HFP ~HP
?
~J EP?

~J
~X ; ð44Þ

G3 ¼ ~X
H
P?

~J EP?
~J P ~HP

?
~J
~X� ~X

H
P?

~J EP?
~J P ~HP

?
~J EP?

~J
~X ; ð45Þ

G4 ¼ ~X
H
P?

~J EP?
~J P ~HFP ~HP

?
~J
~X ~X

H
P?

~J EP?
~J P ~H FP ~HP

?
~J EP?

~J
~X :

ð46Þ
We observe that

~X�EP?
~J
~X ¼ ~X IK�ðIK þ ~X

H
P?

~J
~X Þ�1 ~X

H
P?

~J
~X

h i
: ð47Þ

Moreover, according to the following identity (see e.g.,
[42])

IN�ðINþLÞ�1L¼ ðINþLÞ�1; ð48Þ
with L being an N � N matrix, (47) can be recast as

~X�EP?
~J
~X ¼ ~X ðIKþ ~X

H
P?

~J
~X Þ�1: ð49Þ

It follows that (43)–(46) can be represented by

G1 ¼ ~X
H
P?

~J P ~HP
?
~J
~X ðIK þ ~X

H
P?

~J
~X Þ�1; ð50Þ

G2 ¼ ~X
H
P?eJ P ~H FP ~HP

?eJ ~X ðIKþ ~X
H
P?

~J
~X Þ�1; ð51Þ

G3 ¼ ~X
H
P?

~J EP?
~J P ~HP

?
~J
~X ðIKþ ~X

H
P?

~J
~X Þ�1; ð52Þ
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and

G4 ¼ ~X
H
P?

~J EP?
~J P ~H FP ~HP

?
~J
~X ðIKþ ~X

H
P?

~J
~X Þ�1: ð53Þ

respectively. In a similar manner, we have

G1�G3 ¼ ðIKþ ~X
H
P?

~J
~X Þ�1 ~X

H
P?

~J P ~HP
?
~J
~X ðIKþ ~X

H
P?

~J
~X Þ�1;

ð54Þ

G2�G4 ¼ ðIKþ ~X
H
P?

~J
~X Þ�1 ~X

H
P?

~J P ~H FP ~HP
?
~J
~X ðIKþ ~X

H
P?

~J
~X Þ�1:

ð55Þ
Furthermore, it follows from (41) that

~X
H
P?

~J P ~HP
?
~J
~Xþ ~X

H
P?

~J P ~HFP ~HP
?
~J
~X ¼ ~X

H
P?

~J P ~HP
?
~J
~X IK½

þðIK þ ~X
H
P?

~J P?
~H P?

~J
~X Þ�1 ~X

H
P?

~J ðIN�P?
~H ÞP?

~J
~X
i

¼ ~X
H
P?

~J P ~HP
?
~J
~X IK�ðIKþ ~X

H
P?

~J P?
~H P?

~J
~X Þ�1 ~X

H
P?

~J P?
~H P?

~J
~X

h
þðIK þ ~X

H
P?

~J P?
~H P?

~J
~X Þ�1 ~X

H
P?

~J
~X
i

¼ ~X
H
P?

~J P ~HP
?
~J
~X ðIK þ ~X

H
P?

~J P?
~H P?

~J
~X Þ�1

h
þðIK þ ~X

H
P?

~J P?
~H P?

~J
~X Þ�1 ~X

H
P?

~J
~X
i

¼ ~X
H
P?

~J P ~HP
?
~J
~X ðIKþ ~X

H
P?

~J P?
~H P?

~J
~X Þ�1ðIK þ ~X

H
P?

~J
~X Þ;
ð56Þ

where we have used (48) in the last equality. According to
(54)–(56), we have

G1þG2�G3�G4 ¼ ðIK þ ~X
H
P?

~J
~X Þ�1 ~X

H
P?

~J P ~HP
?
~J
~X ðIK

þ ~X
H
P?

~J P?
~H P?

~J
~X Þ�1: ð57Þ

Plugging (57) into (42) results in (21). This finishes the
derivation.

References

[1] E. Conte, A.D. Maio, G. Ricci, GLRT-based adaptive detection algo-
rithms for range-spread targets, IEEE Trans. Signal Process. 49 (7)
(2001) 1336–1348.

[2] X. Shuai, L. Kong, J. Yang, Adaptive detection for distributed targets
in Gaussian noise with Rao and Wald tests, Sci. China Inf. Sci. 55 (6)
(2012) 1290–1300.

[3] C. Hao, X. Ma, X. Shang, L. Cai, Adaptive detection of distributed
targets in partially homogeneous environment with Rao and Wald
tests, Signal Process. 92 (4) (2012) 926–930.

[4] E.J. Kelly, K.M. Forsythe, Adaptive Detection and Parameter Estima-
tion for Multidimensional Signal Models, Lincoln Laboratory, Lex-
ington, 1989.

[5] W. Liu, W. Xie, J. Liu, Y. Wang, Adaptive double subspace signal
detection in Gaussian background—Part I: Homogeneous environ-
ments, IEEE Trans. Signal Process. 62 (9) (2014) 2345–2357.

[6] W. Liu, W. Xie, J. Liu, Y. Wang, Adaptive double subspace signal
detection in Gaussian background—Part II: Partially homogeneous
environments, IEEE Trans. Signal Process. 62 (9) (2014) 2358–2369.

[7] J. Carretero-Moya, A.D. Maio, J. Gismero-Menoyo, A. Asensio-López,
Experimental performance analysis of distributed target coherent
radar detectors, IEEE Trans. Aerosp. Electron. Syst. 48 (3) (2012)
2216–2238.

[8] G. Cui, L. Kong, X. Yang, J. Yang, The Rao and Wald tests designed for
distributed targets with polarization MIMO radar in compound-
Gaussian clutter, Circuits Syst. Signal Process. 31 (1) (2012) 237–254.

[9] A. Aubry, A.D. Maio, L. Pallotta, A. Farina, Radar detection of
distributed targets in homogeneous interference whose inverse
covariance structure is defined via unitary invariant functions, IEEE
Trans. Signal Process. 61 (20) (2013) 4949–4961.
[10] T. Jian, Y. He, F. Su, X. Huang, D. Ping, Adaptive detection of range-
spread targets without secondary data in multichannel autoregres-
sive process, Digital Signal Process. 23 (5) (2013) 1686–1694.

[11] C. Hao, D. Orlando, G. Foglia, X. Ma, S. Yan, C. Hou, Persymmetric
adaptive detection of distributed targets in partially-homogeneous
environment, Digital Signal Process. 24 (2014) 42–51.

[12] W. Liu, W. Xie, J. Liu, D. Zou, H. Wang, Y. Wang, Detection of a
distributed target with direction uncertainty, IET Radar Sonar Navig.
8 (9) (2014) 1177–1183.

[13] Y. Xiao, G. Cui, W. Yi, L. Kong, J. Yang, Adaptive detection and
estimation for an unknown occurring interval signal in correlated
Gaussian noise, Signal Process. 108 (2015) 440–450.

[14] S.-W. Xu, P.-L. Shui, Y.-H. Cao, Adaptive range-spread maneuvering
target detection in compound-Gaussian clutter, Digital Signal Pro-
cess. 36 (2015) 46–56.

[15] L.L. Scharf, B. Friedlander, Matched subspace detectors, IEEE Trans.
Signal Process. 42 (8) (1994) 2146–2156.

[16] R.T. Behrens, L.L. Scharf, Signal processing applications of oblique
projection operators, IEEE Trans. Signal Process. 42 (6) (1994)
1413–1424.

[17] L.L. Scharf, M.L. McCloud, Blind adaptation of zero forcing projec-
tions and oblique pseudo-inverses for subspace detection and
estimation when interference dominates noise, IEEE Trans. Signal
Process. 50 (12) (2002) 2938–2946.

[18] J. Liu, Z.-J. Zhang, Y. Cao, M. Wang, Distributed target detection in
subspace interference plus Gaussian noise, Signal Process. 85 (2014)
88–100.

[19] O. Besson, L.L. Scharf, CFAR matched direction detector, IEEE Trans.
Signal Process. 54 (7) (2006) 2840–2844.

[20] O. Besson, L.L. Scharf, F. Vincent, Matched direction detectors and
estimators for array processing with subspace steering vector uncertain-
ties, IEEE Trans. Signal Process. 53 (12) (2005) 4453–4463.

[21] O. Besson, Detection in the presence of surprise or undernulled
interference, IEEE Signal Process. Lett. 14 (5) (2007) 352–354.

[22] A. Aubry, A.D. Maio, D. Orlando, M. Piezzo, Adaptive detection of
point-like targets in the presence of homogeneous clutter and
subspace interference, IEEE Signal Process. Lett. 21 (7) (2014)
848–852.

[23] F. Bandiera, O. Besson, D. Orlando, G. Ricci, L.L. Scharf, GLRT-based
direction detectors in homogeneous noise and subspace interfer-
ence, IEEE Trans. Signal Process. 55 (6) (2007) 2386–2394.

[24] F. Bandiera, O. Besson, G. Ricci, Direction detector for distributed
targets in unknown noise and interference, Electron. Lett. 49 (1)
(2013) 68–69.

[25] F. Bandiera, A. De Maio, A.S. Greco, G. Ricci, Adaptive radar detection
of distributed targets in homogeneous and partially homogeneous
noise plus subspace interference, IEEE Trans. Signal Process. 55 (4)
(2007) 1223–1237.

[26] A. De Maio, Rao test for adaptive detection in Gaussian interference
with unknown covariance matrix, IEEE Trans. Signal Process. 55 (7)
(2007) 3577–3584.

[27] D. Orlando, G. Ricci, A Rao test with enhanced selectivity properties
in homogeneous scenarios, IEEE Trans. Signal Process. 58 (10) (2010)
5385–5390.

[28] J. Guan, X. Zhang, Subspace detection for range and Doppler
distributed targets with Rao and Wald tests, Signal Process. 91 (1)
(2011) 51–60.

[29] C. Hao, D. Orlando, X. Ma, C. Hou, Persymmetric Rao, and Wald tests
for partially homogeneous environment, IEEE Signal Process. Lett. 19
(9) (2012) 587–590.

[30] B. Shi, C. Hao, C. Hou, X. Ma, C. Peng, Parametric Rao test for
multichannel adaptive detection of range-spread target in partially
homogeneous environments, Signal Process. 108 (2015) 421–429.

[31] E. Conte, A. De Maio, Distributed target detection in compound-
Gaussian noise with Rao and Wald tests, IEEE Trans. Aerosp.
Electron. Syst. 39 (2) (2003) 568–582.

[32] E.J. Kelly, An adaptive detection algorithm, IEEE Trans. Aerosp.
Electron. Syst. 22 (1) (1986) 115–127.

[33] F. Bandiera, M. Mancino, G. Ricci, Localization strategies for multiple
point-like radar targets, IEEE Trans. Signal Process. 60 (12) (2012)
6708–6712.

[34] G.A. Fabrizio, A. Farina, M.D. Turley, Spatial adaptive subspace
detection in OTH radar, IEEE Trans. Aerosp. Electron. Syst. 39 (4)
(2003) 1407–1428.

[35] B. Friedlander, A subspace method for space time adaptive proces-
sing, IEEE Trans. Signal Process. 53 (1) (2005) 74–82.

[36] W. Liu, Y. Wang, W. Xie, Fisher information matrix, Rao test, and
Wald test for complex-valued signals and their applications, Signal
Process. 94 (2014) 1–5.



W. Liu et al. / Signal Processing 117 (2015) 333–342342
[37] J.R. Magnus, H. Neudecker, Matrix Differential Calculus with Appli-
cations in Statistics and Econometrics, Wiley, New York, NY, 2007.

[38] S.M. Kay, Fundamentals of Statistical Signal Processing: Detection
Theory, Prentice-Hall, Englewood Cliffs, NJ, 1998.

[39] F. Bandiera, D. Orlando, G. Ricci, On the CFAR property of GLRT-
based direction detectors, IEEE Trans. Signal Process. 55 (8) (2007)
4312–4315.

[40] K.J. Sohn, H. Li, B. Himed, Parametric GLRT for multichannel adaptive
signal detection, IEEE Trans. Signal Process. 55 (11) (2007)
5351–5360.
[41] D. Sengupta, S.M. Kay, Parameter estimation and GLRT detection in
colored non-Gaussian autoregressive processes, IEEE Trans. Acoust.
Speech Signal Process. 38 (10) (1990) 1661–1676.

[42] F. Bandiera, O. Besson, G. Ricci, An ABORT-like detector with
improved mismatched signals rejection capabilities, IEEE Trans.
Signal Process. 56 (1) (2008) 14–25.


