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Pattern-Coupled Sparse Bayesian Learning for
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Abstract—We propose a pattern-coupled sparse Bayesian
learning method for inverse synthetic aperture radar (ISAR)
imaging by exploiting a block-sparse structure inherent in ISAR
target images. A two-dimensional pattern-coupled hierarchical
Gaussian prior is proposed to model the pattern dependencies
among neighboring scatterers on the target scene. An expec-
tation-maximization (EM) algorithm is developed to infer the
maximum a posterior (MAP) estimate of the hyperparameters,
along with the posterior distribution of the sparse signal. Nu-
merical results are provided to illustrate the effectiveness of the
proposed algorithm.
Index Terms—Block-sparse structure, expectation-maximiza-

tion (EM), ISAR, pattern-coupled sparse bayesian learning.

I. INTRODUCTION

T HE application of sparse representation to SAR/ISAR
imaging has attracted much attention over the past

few years, e.g. [1]–[8]. This new class of advanced imaging
methods present a number of unique advantages over con-
ventional range-Doppler methods [9], including improved
resolvability of point scatterers [1], [3], reduced speckle [4],
and recoverability from fewer data samples [2]. The basic
idea behind these works is to formulate SAR/ISAR imaging
as a sparse signal recovery problem. In addition to the sparse
structure, real-world SAR/ISAR images often have additional
structures that can be utilized. For example, by exploiting the
piecewise smoothness [4] and the continuity structure [6] of the
target image, an enhanced robustness against speckle noise and
a substantial performance improvement can be achieved. Also,
in practice, the target of interest usually exhibits block-sparse
structures in which nonzero large scatterers occur in clusters.
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This block-sparse pattern can be considered as a special form of
the continuity structure where nonzero scatterers demonstrate
continuity in both the range and cross-range domains.
This paper aims at leveraging the block-sparse structure of

the target image to enhance ISAR imaging performance. We
propose a two-dimensional pattern-coupled sparse Bayesian
learning method which is a generalization of the conventional
sparse Bayesian learning (SBL) method [10] to deal with
block-sparse signals. The proposed method is effective and
flexible to exploit the underlying block-sparse structures,
without requiring the prior knowledge of the block partition.
Experimental results demonstrate that the proposed method is
able to achieve a substantial performance improvement over
existing algorithms, including the conventional SBL method
[10], [11].

II. ISAR IMAGING MODEL

Suppose the radar transmits a linear frequency-modulated
signal

(1)

where is the fast time, is the pulse duration, and rep-
resents the unit rectangular function, is the carrier frequency,
and is the chirp rate. Consider the signal reflected from a single
scatterer located at position in the cross-range and range
domains. Assume that the phase errors have been compensated
by autofocus algorithms, e.g. [12]. After range compression, the
echoed signal is given as

(2)

where denotes the scattering amplitude, is the slow time,
is the coherent processing interval, is the sinc function,
denotes the speed of light, is the wavelength, and is the

instantaneous distance between the scatterer and the radar which
can be approximated by , where is the
target coordinate origin, and denotes the rotational angular
velocity (see Fig. 1). Substituting into (2), we arrive at

(3)

where is the Doppler frequency.
To model the signal backscattered from a target scene, we dis-

cretize the target scene into an grid in the cross-range
and range domains, with each scatterer located at grid ,
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Fig. 1. ISAR model.

and its position and scattering amplitude given respectively by
and . In other words, we assume that each range

cell consists of scatterers with different cross-range loca-
tions. Hence the signal in the range cell corresponding to

is a superposition of the echoed signals from the
scatterers [2]

(4)
where , denotes the additive noise, and
the constant phase term is absorbed
into the scattering amplitude. By sampling the time series:

, where is the pulse repetition period, and
is the total number of pulses, the sampled signal

can be expressed compactly as

(5)

where ,
, , and

is an ( ) matrix with its th entry given
by . Putting together signals in different range
cells, we obtain

(6)

in which , , and
. Clearly, we have ,

, and . We assume that is the addi-
tive multivariate Gaussian noise with zero mean and covariance
matrix . The problem of interest is recover the unknown
sparse reflectivity field from the observed data .

III. BAYESIAN MODEL

To exploit the underlying block-sparse structure in the
target image, we propose a two-dimensional pattern-coupled
hierarchical Gaussian prior model which is an extension of
our previous model [13] to the two-dimensional scenario.
Specifically, in the first layer, coefficients are assigned
a Gaussian prior distribution. To capture pattern dependencies
among neighboring coefficients, the Gaussian prior for each
coefficient not only involves its own hyperparameter

, but also its immediate neighbor hyperparameters, i.e.

(7)

where is a hyperparameter vector with its
th entry equal to , denotes the complex

Gaussian distribution, and

(8)

in which denotes the neighborhood of the grid point
, i.e.
1, and is a parameter indicating the pattern rel-

evance between the coefficient and its neighboring coef-
ficients. The second layer specifies Gamma distributions as hy-
perpriors over the sparsity-controlling hyperparameters

(9)

As discussed in [10], for properly chosen and , this hyperprior
allows the posterior mean of to become arbitrarily large.
As a consequence, the associated coefficients will be driven to
zero, thus yielding a sparse solution.
When , the prior model (7) reduces to the conventional

sparse Bayesian learning model [10]. When , we see that
the sparsity of each coefficient is not only controlled by
the hyperparameter , but also by the neighboring hyperpa-
rameters . The coefficient will be
driven to zero if or any of its neighboring hyperparame-
ters goes to infinity. Hence the sparsity patterns of neighboring
coefficients are related with each other through their shared hy-
perparameters. On the other hand, for any pair of neighboring
coefficients, each of them has its own hyperparameters that are
not shared by the other coefficient. It means that no coefficients
are pre-specified to share a common sparsity pattern, which en-
ables the prior to provide flexibility to model any block-sparse
structures.
Also, the noise variance is assumed unknown, and to

estimate this parameter, we place a Gamma hyperprior over ,
i.e.

(10)

where following [10], we set and .

IV. BAYESIAN INFERENCE
We now proceed to perform Bayesian inference for the pro-

posed pattern-coupled hierarchical model. To facilitate our al-
gorithm development, we first convert (6) as follows by vector-
izing the observation matrix :

(11)

where , , , and ,
stands for the Kronecker product. Clearly, we have ,

, and . Based on the above hierarchical
model, the posterior distribution of can be computed as

(12)

1Note that for the edge grid points, they only have two or three immediate
neighboring points, in which case the definition of changes accordingly.
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According to (7), it can be readily verified that the posterior
follows a Gaussian distribution with its mean and

covariance matrix given respectively by

(13)

where is a diagonal matrix with its th diagonal
element equal to , i.e.

We now exploit the expectation-maximization (EM) formula-
tion to search for the maximum a posterior (MAP) estimate of

and , treating the signal as hidden variables. Details
are elaborated next.
E-Step: Given the current estimates of the hyperpa-

rameters and the observed data , the E-step
requires computing the expected value (with respect to
the hidden variables ) of the complete log-posterior of

, i.e. , where the operator
denotes the expectation with respect to the

distribution . This complete log-posterior is
also referred to as the Q-function. Since

(14)

the Q-function can be decomposed into a summation of two
terms

(15)

Recalling (7) and (13), it can be easily derived

(16)

where , denotes the
th entry of , denotes the th diagonal

element of the covariance matrix , and are computed
according to (13), with and replaced by the current estimate

and .
The Q-function of can be easily obtained as follows

(17)

where

(18)

in which , is given by (8), with
replaced by .
M-Step: In the M-step, a new estimate of is obtained

by maximizing the Q-function, i.e.

(19)

We observe that in the Q-function (15), the hyperparameters
and are separated from each other. This allows the estimation
of and to be decoupled into two independent optimization
problems. We first examine the optimization of , i.e.

(20)

We see that in the Q-function (16), hyperparameters are entan-
gled with each other due to the logarithm term (note
that , defined in (8), is a function of ). In this case, an
analytical solution to the optimization (20) is difficult to obtain.
Gradient descent methods can certainly be used to search for the
optimal solution. Nevertheless, here we consider an alternative
strategy which aims at finding a simple, analytical sub-optimal
solution of (20). Such an analytical sub-optimal solution can be
obtained by examining the optimality condition of (20). Sup-
pose is the optimal solution of (20), then the first
derivative of the Q-function with respect to equals to zero at
the optimal point, i.e.

(21)

where

(22)

(23)

Since all hyperparameters and are non-negative,
it can be easily verified , and

for . Therefore
is bounded by . Consequently we have

(24)

Combining (21) and (24), we reach that is within the range

(25)

A sub-optimal solution to (20) can therefore be simply chosen
as

(26)

We see that the solution (26) provides a simple rule for the up-
date of . Also, notice that the update rule (26) resembles that
of the conventional sparse Bayesian learning work [10] except
that is equal to for the conventional sparse Bayesian
learning method, while for our case, is a weighted sum-
mation of and for . Numerical results
show that for properly chosen and , this update rule, although
sub-optimal, guarantees an exact recovery and provides superior
recovery performance.
We now discuss the update of . Computing the first deriva-

tive of (17) with respect to and setting it equal to zero, we
obtain

(27)
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Fig. 2. Images reconstructed from noiseless data by respective algorithms, where .

Fig. 3. Images reconstructed from noisy data by respective algorithms, where .

For clarity, we summarize our proposed algorithm as follows.

Algorithm 1 Pattern-Coupled Sparse Bayesian Learning

1. At iteration ( ): given the current estimates
of and , compute the mean and the covariance
matrix of the posterior distribution
via (13).

2. Compute a new estimate and , according to
(26) and (27), respectively;

3. Continue the above iteration until ,
where is chosen as the mean of the posterior
distribution , and is a prescribed
tolerance value.

V. SIMULATION RESULTS

We now carry out experiments to illustrate the performance
of our proposed pattern-coupled sparse Bayesian learning
(PC-SBL) method2. We compare our algorithm with the con-
ventional range-Doppler (RD) algorithm [9], the SBL method
[10], the basis pursuit (BP/BPDN) method [14], and theMCMC
method [6] which exploits the continuity structure of the image.
The “Yak-42” plane data set is used in our experiments. The
radar system parameters for this data set are the same as that
in [7]. The number of range cells is 256, and the total number
of pulses is 256 within dwell time of 2.56s. As shown in
[6], the underlying reflectivity field of the data set exhibits a
block-sparse structure, where strong scatterers are clustered
and appear in a plane shape. The parameters , and for our
proposed algorithm are set equal to , and ,
where is empirically proven to be a robust choice for the
complex sparse signal case, the choice of is not very critical
to the recovery performance as long as is set into the range

. Also, for PC-SBL and SBL, a pruning operation
is adopted, that is, at each iteration, we prune those small

2Codes are available at http://www.junfang-uestc.net/codes/ISAR.rar

TABLE I
RUNNING TIMES OF RESPECTIVE ALGORITHMS

coefficients whose associated hyperparameters are greater than
. The corresponding atoms in are removed from the

matrix accordingly. The initial values of and are chosen as
and in our experiments.

We first consider a noiseless case. Fig. 2 shows ISAR im-
ages recovered by respective algorithms using consec-
utive pulses that are randomly chosen from 256 pulses. We see
that when only a small amount of data are available, the con-
ventional RD method provides a defocused and blurred image
which is hardly recognized. Also, our proposed PC-SBLmethod
renders the best imaging quality among all methods. It preserves
most of the strong scatterers, whereas a considerable portion
of scatterers are missing in the image recovered by the SBL
method. The BP method yields an obscure image with artifacts
outside the target region. We also consider a noisy case where
the data are corrupted by an additive white Gaussian noise with
noise variance dB . Fig. 3 de-
picts the images reconstructed by respective algorithms, where

. It can be observed that the PC-SBL method still re-
tains decent imaging performance, whereas other compressed
sensing methods degrade significantly in the noisy case. The
average running times of respective algorithms are also pro-
vided in Table I, where results are averaged over 100 indepen-
dent runs.

VI. CONCLUSIONS
We developed a pattern-coupled sparse Bayesian learning

method for ISAR imaging. A pattern-coupled hierarchical
Gaussian prior was proposed to exploit the block-sparse
structure on the target scene. Numerical results show that
the proposed method achieves a significant image recovery
improvement as compared with existing methods.
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